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The combination of fluid-structure interactions with stochasticity, due to thermal fluctu-
ations, remains a challenging problem in computational fluid dynamics. We develop an 
efficient scheme based on the stochastic immersed boundary method, Stokeslets, and mul-
tiple timestepping. We test our method for spherical particles and filaments under purely 
thermal and deterministic forces and find good agreement with theoretical predictions for 
Brownian Motion of a particle and equilibrium thermal undulations of a semi-flexible fil-
ament. As an initial application, we simulate bio-filaments with the properties of F-actin. 
We specifically study the average time for two nearby parallel filaments to bundle together. 
Interestingly, we find a two-fold acceleration in this time between simulations that account 
for long-range hydrodynamics compared to those that do not, suggesting that our method 
will reveal significant hydrodynamic effects in biological phenomena.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Since cells are composed largely of water, cell biology fundamentally involves fluid-structure interactions. Indeed, fluid 
dynamics is a key driver of many cell biological phenomena, including the swimming of both eukaryotes and bacteria, 
ciliary beating [1], and cell blebbing [2,3]. More surprisingly, recent research is demonstrating that fluid dynamics is also an 
important player in organelle positioning in large cells like oocytes [4,5], some surface crawling of both eukaryotes [6] and 
bacteria [7], ultra-fast endocytosis in neurons [8], and transient cell-cell contact by immune cells [9].

To understand these flows, computational biologists have developed tools such as the Immersed Boundary Method (IBM) 
[10] and used these to simulate cellular phenomena [8,11,12]. All of the above-listed cellular phenomena play out over 
seconds timescales and involve entire cells or regions of cells, thereby necessitate micron-length-scale modeling.

On the other hand, cellular matter falls into the class of soft matter, meaning that thermal fluctuations can dominate its 
behavior. Thermal fluctuations have been demonstrated to drive many cellular processes [13,14]. Few studies have included 
both thermal fluctuations and fluid-structure interaction, even though there is evidence that some cellular phenomena 
involve both [9].

Previous work to do so has been led by Atzberger [15–19] and others [20,21] including us [22]. These methods involve 
solving the Landau-Lifshitz Navier–Stokes equation (see Eqs. (5)–(8) below), or its low-Reynolds analogue. A significant 
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finding of previous research, which we highlight in this work, is that thermal fluctuations implicate the inertial timescale 
τinertia =∼ 10−12 s (which depends on the required spatial scale of interest). This is counter-intuitive, since the length-
and time-scales of interest suggest we are safely in the low-Reynolds regime. As a consequence, straightforward numerical 
simulations are limited to numerical timesteps �t ∼ τ inertia, and cannot practically be used to simulate cell biological 
phenomena, which often play out over seconds.

In this work, we present a scheme for simulating fluid-structure interactions with thermal fluctuations over long 
timescales. Our method is capable of simulating structures with soft material properties of biological matter: biopolymers 
with the flexural rigidity of the cytoskeleton and membranes with the bending coefficient of the cell’s plasma membrane. 
Importantly, we perform simulations of a 1-micron cube box up to 1 second. This takes approximately 1 week of computing 
time, opening up practical cell-biological application.

Several computational techniques combine to allow us this efficiency, which we mention here and discuss in depth in 
Section 4. First, we extend previous work [16] by solving for the flow averaged over a short time, i.e., instead of solving 
for the instantaneous flow field v(x, y, z, t), we solve for with the flow averaged over a short time interval �t at constant 
position,

u(x, y, z, t) = 1

�t

t+�t∫
t

v(x, y, z, t′) dt′. (1)

Second, we employ two nested timesteps, with thermal fluctuations only acting on the outer timestep. We show below that 
the dynamics on the inner time step are sufficiently smooth to allow a third computational technique: an implicit solver 
based on Broyden’s method [30]. Fourth, we split the linear flow into two parts, one solved using IBM and the other by 
a regularized Stokeslet method, allowing spatial discretization much larger than would be possible with IBM alone. Finally, 
we parallelize the algorithm using a GPU implementation.

As a specific application, we apply our method to compute the bundling of actin filaments, molecules that are key players 
in many cell biological processes [23]. By including hydrodynamic interactions, we improve upon previous simulations 
to understand actin bundling [14]. We find that hydrodynamic interactions accelerates bundling by a factor of two, for 
physiological parameters, and that this acceleration can be partly understood in terms of a nonzero covariance between 
pairs of filaments.

The paper is organized as follows. In Section 2, we introduce the physical model using the IBM framework. In Section 3, 
we discretize the system in preparation for numerical evaluation. In Section 4, we develop a numerical method based on 
a steady Stokes formulation. We accelerate the numerical simulation by first combining the Stokeslets Method with the 
Stochastic Immersed Boundary method (SIBM) and, second, by developing an implicit, multiple-timestep method. We test 
our numerical scheme in Section 5. And, finally, we apply our method to bundling biopolymers in Section 6. We end with a 
discussion of limitations and future applications in Section 7.

2. Model statement

Consider a bio-structure immersed in a fluid, parameterized by coordinate X. In general, this could be a bio-membrane 
such as the cell membrane, but here we restrict our attention to bio-filaments, such as microfilaments made of the pro-
tein actin. These linear polymers are semi-flexible (meaning they are typically shorter than their persistence length) and 
relatively strong, resisting buckling by multi-piconewton compressive forces and filament fracture by nanonewton tensile 
forces.

To understand the dynamics of such filaments immersed in fluid, the width of the filament is important: A thick filament 
must displace more fluid when it moves laterally compared to a thin filament, therefore thick filaments fluctuate slower 
than thin filaments. Specifying the width of a filament in a numerical scheme presents a difficulty since the straightforward 
way to capture these molecular details is to use a finer grid, significantly increasing the computational cost of the problem. 
We return to this issue in Section 4.2.

For a filament, we use the standard elastic energy

�(X) =
∫
L

(
B

2
H2 + λ

)
dl (2)

where B is the bending rigidity, where l parametrizes the one-dimensional space curve describing the centerline of the 
filament,

H =
∥∥∥∥d2Xdl2

∥∥∥∥ (3)

is the mean curvature and λ is a Lagrange multiplier to enforce conservation of the length of the filament, specifically∥∥∥∥dX
∥∥∥∥= 1. (4)
dl
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Table 1
Model parameters. Note the parameter R will appear in Eq. (44).
Symbol Meaning Value Reference

ρ Mass density of fluid and structure 103 kg/m3 (value for water)
η Viscosity of fluid 1.0 mPa s (value for water)
kB T Thermal energy unit 4.1× 10−21 J (value at 20 ◦C)
B Bending rigidity of F-actin filament 4.2× 10−26 Nm2 [14]
R Radius of F-actin filament 2.5× 10−9 m [14]
L Length of F-actin filament 100–300 nm [14]

Then FX = −∇X�(X) is the elastic force density associated with configuration X.
For a 3D fluid domain D containing viscous fluid with viscosity η and density ρ , parameterized by Eulerian coordinate x, 

containing an immersed structure X, the equations of motion are [15–17,21,24],

ρ
∂v

∂t
= η∇2v− ∇p + f+ fthm, (5)

∇ · v = 0, (6)
dX

dt
= γ [v]. (7)

Eqs. (5) and (6) describe dynamics of the fluid. Here v is the velocity, p is the pressure, and f represents the influence of 
the immersed structure. In the stochastic immersed boundary formulation,

f = 
[FX] + ∇X
kB T (8)

where 
 is a (smoothed) delta function describes how a structure influences the nearby fluid, and the term ∇X
kB T arises 
from the thermal fluctuations associated with the momentum of the structure, which disappears by a zero mass assumption 
of the structure [16,17]. We note that this term is a gradient of a scalar function and it changes only the pressure but not 
the velocity field in an incompressible fluid. Thermal fluctuations are contained in fthm , which satisfies

〈fthm(x, s)fTthm(y, t)〉 = −2kB Tη∇2δ(x− y)δ(t − s). (9)

Eq. (7) is the equation of motion of the immersed structure, e.g., the filaments. The linear operator γ describes how the 
structure moves with the fluid, and 
 and γ are adjoint operators [16,17]. We make use of a standard choice for these op-
erators [10,15,16], described in Eq. (32). Using these operators to describe a filament of specified radius, R , in 3 dimensions 
raises difficulties that we discuss in Sec. 4.2.

Typical parameters we use in this work are shown in Table 1.

3. Spatial and temporal discretization in the Stokes limits

In this section, we discretize Eq. (5) in preparation for numerical implementation. We describe three regimes in which 
the timescale of interest could fall, one of which (iii) is the Stokes limit. We do this with the help of an average velocity 
defined over a time period �t ,

un ≡ 1

�t

tn+1∫
tn

v(s)ds, (10)

where v(t) is the instantaneous velocity at time t . In the Stokes regime, this allows us to choose a discretization that reduces 
the computational cost significantly.

The Eulerian fluid domain {x|x ∈ �} is resolved by a finite difference discretization. The fluid variables (velocity field v
and pressure field p) are represented on a periodic grid with length L along each direction, M grid points along each 
direction, and grid spacing �x = L/M . The discrete version of Eqs. (5) and (6) is given by

ρ
dvm
dt

= ηLvm − Dpm + fm + fthm(xm, t), (11)

∇ · vm = 0. (12)

Here L is the 7 point discrete Laplacian, D is the central difference gradient, fm is from the immersed structure by the 
fluid-structure coupling, and vm is the instantaneous velocity. Note that thermal fluctuations in the system are derived 
through the kinetic energy of the fluid, so the mass appears as a linear prefactor and cannot be simply set to zero to reduce 
to Stokes’ equations [16]. The discrete Fourier transform of the fluid variables yields
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v̂k = 1

N3

∑
m

vme−2π ik·m/M , (13)

vm =
∑
k

v̂ke
2π ik·m/N . (14)

Here each sum is over the N3 lattice points defined by m = {m1, m2, m3} and k = {k1, k2, k3}, where 0 ≤ mi ≤ M − 1 and 
0 ≤ ki ≤ M − 1 for i = 1, 2, 3.

Eqs. (11) and (12) in Fourier space read as

dv̂k
dt

= −αkv̂k − iρ−1 p̂kgk + ρ−1 f̂k + ρ−1 f̂thm,k, (15)

gk · v̂k = 0, (16)

where

αk = 2η

ρ�x2

3∑
l=1

[
1− cos

(
2πk(l)/M

)]
, (17)

gk = sin
(
2πk(l)/M

)
/�x. (18)

The thermal fluctuations in Fourier space are [15,16]

f̂thm,k = ρ
√
2Dk

dB̃k(t)

dt
. (19)

The Dk denotes the strength of thermal fluctuations in the k-th mode,

Dk =
⎧⎨
⎩

kB T
2ρL3

αk, for k ∈ H,

kB T
ρL3

αk, for k /∈ H,
(20)

where H = {k|ki = 0, M/2, i = 1, 2, 3}. Stochasticity is introduced by B̃k(t), which denotes a complex-valued Brownian mo-
tion process with the real and imaginary parts of each Cartesian component consisting of an independent standard Brownian 
motion process (which is dimensionless).

Using Itô’s calculus, the instantaneous velocity in Fourier space is computed from Eq. (15) to give

v̂k(t
n+1) = v̂k(t

n)e−αk�t + 1− e−αk�t

ραk
ξkf̂

n
k +√2Dkξk

tn+1∫
tn

e−αk(tn+1−s)dB̃k(s), (21)

where ξk = I − gk · gT
k/|gk|2 is the projection orthogonal to gk . The average velocity um over a time period �t is

um(t) = 1

�t

∑
k

tn+1∫
tn

⎛
⎝e−αk(s−t)v̂k(t) + 1− e−αk(s−t)

ραk
ξkf̂

n
k +√2Dkξk

s∫
t

e−αk(s−u)dB̃k(u)

⎞
⎠ · e2πk·m/Nds. (22)

Using the definition of the Itô integral [25], the double integral can be written as

tn+1∫
tn

s∫
t

e−αk(s−u)dB(u)ds = 1

−αk

tn+1∫
tn

e−αk(t+�t−u)dB(u) + B(t + �t) − B(t)

αk
, (23)

giving the average velocity in Fourier space,

ûn
k =

(
1− e−αk�t

αk�t

)
v̂nk +

(
αk�t − (1− e−αk�t)

α2
k�t

)
ρ−1ξkf̂

n
k

−
√
2Dk

αk�t

tn+1∫
tn

e−αk(t+�t−s)ξkdBk(s) +
√
2Dk

αk�t

(
ξkBk(t

n+1) − ξkBk(t
n)
)

(24)

The above is valid for any choice of timestep �t . However, we observe that several natural timescales emerge from the 
dynamics, leading to three categories [16]:
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i. �t  min
1

αk
, when the time step is sufficiently small that the dynamics of all modes of the fluid are resolved by the 

stochastic immersed boundary method.

ii. min
1

αk
� �t �max

1

αk
, when the fluid dynamics are only partially resolved.

iii. max
1

αk
 �t  τmov (a), when the time step is large enough to underresolve all modes of the fluid, but small enough 

to resolve the dynamics of the immersed structure. Here τmov (a) denotes the time required for an elementary particle 
to move a displacement equal to the grid size either by advection or diffusion. We refer to this as the Stokes regime.

For our system of interest, �x = 5 × 10−9 m, η = 10−3 Pa s and ρ = 103 kg/m3, min
1

αk
≈ 2ρ�x2

9η
≈ 10−12 s and 

max
1

αk
≈ 10−8 s. This gives �t � max 1

αk
= 10−8 s, suggesting we are in the Stokes motion regime. We also confirm that 

τmov(a) is sufficiently large, a posteriori: We run a simulation up to 2 × 103 steps using SIBM with �t = 5 × 10−7s. The 
average value of the displacement for each point on the filament over �t is 0.0324�x, with a standard deviation 0.031�x, 
which means �t = 5 × 10−7s  τmov(a). We therefore seek an expression of Eq. (24) in this limit.

To derive this, we exploit the fact that in Brownian motion, subsequent increments of motion are independent. This 
implies v̂nk is independent of 

∫ tn+1

tn e−αk(t−s)ξkdBk(s) and 
(
ξkBk(tn+1) − ξkBk(tn)

)
. On the other hand, 

∫ tn+1

tn e−αk(t−s)ξkdBk(s)
and 

(
ξkBk(tn+1) − ξkBk(tn)

)
are not independent. The variance of the stochastic terms reads as

E

⎡
⎢⎣−

√
2Dk

αk�t
Re

⎛
⎜⎝

tn+1∫
tn

e−αk(t−s)dBk(s)

⎞
⎟⎠+

√
2Dk

αk�t
Re
(
Bk(t

n+1) − Bk(t
n)
)⎤⎥⎦

2

= 2Dk

(αk�t)2

(
2αk�t − 3− e−2αk�t + 4e−αk�t

2αk

)
, (25)

given E 
[
Re
(∫ tn+1

tn e−αk(tn+1−s)dBk(s)
)
Re
(
Bk(tn+1) − Bk(tn)

)] = 1
αk

(1 − e−αk�t). Since 1  αk�t and e−αk�t  1 in the 
Brownian motion regime, Eq. (24) reduces to

ûn
k = (αkρ)−1 ξkf̂

n
k +

√
2Dk

αk�t

√
�t − 3

2αk
ξk�̂k, (26)

where �k is a complex normal random variable. This average velocity can be interpreted as the solution of the below 
system of equations as a Stokes limit of Eqs. (5), (6), (7) and (9),

η∇2u− ∇p + f+ f̄thm(t) = 0, (27)

∇ · u = 0, (28)
dX

dt
= γ [u], (29)

¯̂fthm,k(t) = ρ
√
2Dk

Ck(�t)
�̂k, (30)

where Ck(�t) =
√

2αk�t2

2αk�t−3 > 1. Heuristically, we can think of Ck(�t) as a “cooling” factor that reduces the amplitude 
of thermal fluctuations. This factor arises in the above analysis because, without it, it is not possible to satisfy both the 
Brownian motion relation in the time interval �t and the kinetic energy munitu2/2 = 3kB T /2 (where munit is the mass of 
fluid in a unit cube of fluid).

4. Numerical implementation

The immersed boundary formulation in Eqs. (27)–(30) could be used to simulate stochastic dynamics of the system. 
However, it is challenging to accurately specify the size of the immersed structure — in our case, the size of molecules that 
make up the filaments — since the fluid-structure coupling “smooths” the boundary of the spherical molecules. Especially 
when the size of the structure is small, e.g. a spherical particle of radius 2.0–2.5 nm, the grid size of the fluid needs to 
be much smaller than the filament to approximately resolve the size of the particle, which is computationally inefficient. 
To overcome this, in this section, we introduce a linear decomposition of the Stokes equation. In this decomposition, the 
velocity of the fluid induced by the filament is computed by the regularized Stokelets method, which naturally discerns the 
size of particles in the domain, while the coupling with the structure is solved using the immersed boundary framework.
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4.1. Interpolation for the immersed boundary method

The interpolation of the velocity for the structure is implemented by a smoothing function. At timestep n,

γ [un] =
∑
m

un
mδa

(
xm − Xn)a3, (31)

where the sum is over the index m which indexes the (Eulerian) spatial discretization of the fluid. The smoothing function 
δa is defined as [10,15,16]

δa(x) = 1

a3
ϕ

( |x|
a

)
ϕ

( |y|
a

)
ϕ

( |z|
a

)
for x = (x,y, z), (32)

where a is parameter related to the support of δa , and

ϕ(r) =

⎧⎪⎨
⎪⎩

1
8 (3− 2r + √

1+ 4r − 4r2) for 0 ≤ r ≤ 1,
1
8 (5− 2r − √−7+ 12r − 4r2) for 1 < r ≤ 2,

0 for 2 < r.

(33)

4.2. Describing the structure using a Stokeslets method

As we discussed before, for a filament immersed in the fluid, the molecular width of the filament is important. However, 
specifying the width of a filament in immersed boundary method presents a difficulty. One needs to use finer grid and a 
spherical mesh with grid size �x  r, where r is the radius of a spherical ball, in order to clearly characterize the shape of 
the ball. To avoid this, we split the total average velocity into two parts,

u = u1 + u2, (34)

where

η∇2u1 − ∇p1 − f̄thm(t) = 0, (35)

∇ · u1 = 0, (36)

that resolves the thermal fluctuation, and

η∇2u2 − ∇p2 + f = 0, (37)

∇ · u2 = 0, (38)

that resolves the presence and influence of the structure, i.e., the bio-filaments. Only Eqs. (37)–(38) will be solved using the 
Stokeslet framework, while Eqs. (35)–(36) will be solved using the immersed boundary framework as described above.

We represent the filament by a string of balls. To do this, we turn to the regularized Stokeslets method, which naturally 
resolves the size of a spherical structure to describe proteins making up the filament. In the regularized Stokeslets method, 
a force density is described by

η∇2u2 − ∇p2 + f = 0 (39)

∇ · u2 = 0, (40)

f = FX jφε(x− X j), (41)

where φε is a radically symmetric cutoff function with the property that 
∫

φε(x)dx = 1 and ε is a parameter that controls 
the spreading.

Note that operator 
 to spread the Lagrange force in the immersed boundary method is replaced by the cutoff function 
φε , which can also be thought of as a smoothed δ function. Moreover, no interpolation is needed to calculate the velocity of 
the balls on the filament since u2 simply locates on the Lagrange frame X at the center of each protein molecule. Also note 
that unlike the periodic boundary conditions imposed for the flow field u1 in a cube of size L3, here we assume an infinite 
domain for u2 (as is natural for Stokeslets methods). For a fluid domain much larger than 4lo ≤ L, where lo is the total 
length of a filament, the influence of the periodic boundary condition onto the filament is small, especially for u1 induced 
by thermal fluctuation, that the linear combination of the two is valid.

In the regularized Stokeslets method, the velocity of a spherical particle in the fluid domain is [26,27]

ui(Xq) = 1

8πη

Ns∑
s=1

3∑
ωs FXs, j S

ε
i j

(
Xq,Xs

)
, (42)
j=1
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for i = 1, 2, 3, where Ns is the total number of beads comprising the structure, FXs = (FXs,1, FXs,2, FXs,3
)
is the elastic force 

on the s-th bead for q, s = 1, 2, ..., Ns , {ω1, ω2, ω3, ..., ωNs } are the quadrature weights, and

Sε
i j

(
Xs,Xq

)= δi j(r2 + 2ε2) + rir j
(r2 + ε2)3/2

, (43)

for i, j = 1, 2, 3, is the regularized Stokeslets. In Eq. (43), we use the notation r = {r1, r2, r3} = Xs − Xq , and r = ‖r‖2.
To compute ε we use the Stokes drag relation for a spherical ball,

F = 6πηRv, (44)

where v is the velocity of a ball with radius R immersed in a fluid of viscosity η and dragged by a force F. We assume 
ω0 = 1, Ns = 1 and r = 0 in Eqs. (42) and (43) [27,28] and get ε = 3�x/4 for a single particle. The actin filament is modeled 
as a string of spherical balls of the same size connected without overlapping. This choice allows the symmetry of a spherical 
ball to agree with the radical symmetry of the cutoff function φε . To further confirm that this approximation is appropriate, 
we also performed purely immersed boundary simulations in which we simulated a string of spherical balls where each 
ball is composed of 3 layers of points, with nearby points connected by rigid springs to preserve shape, finding reasonable 
agreement (within 95% for each point).

4.3. Elastic force acting on the filament

The discretized bending energy from Eq. (2) is given by

Eb =
Ns−1∑
i=1

1

2
BH2

i �Li, (45)

where �Li =
(
LXi−1Xi + LXiXi+1

)
/2 and LXi−1Xi = ‖Xi − Xi−1‖2 is the length from Xi−1 to Xi . The curvature is approximated 

by

Hi = ϕi

�Li
, (46)

where ϕi is the small angle between vectors Xi − Xi−1 and Xi+1 − Xi . Thus the bending energy at the ith bead is

Ei = 1

2

ϕ2
i

�Li
. (47)

Taking the variational derivative, the bending force working on the ith bead F[i]
i induced by Ei is

F[i]
i = −2B

Hi

�Li
ni, (48)

where ni is perpendicular to Xi−1Xi+1. Note that here we consider half the total bending energy since F[i]
i /2 = −F[i+1]

i =
−F[i−1]

i , which are all induced by Ei . Also note that, in the variational approach, we measure the small displacement of the 
ith node Xi with respect to the mass center of the two segments Xi−1Xi and Xi_Xi+1 in the Lagrange framework. Therefore, 
net force and net torque are zero, and the total bending force on the ith bead is

Fi,B = F[i]
i − 1

2
(F[i]

i−1 + F[i]
i+1), for i = 1,2, ...,N − 1. (49)

We assume neighboring nodes on the filaments are connected by elastic springs with spring potential

EL =
∑Ns

i=1

λL

2
(LXi−1Xi − �L)2, (50)

where λL is the spring constant, and �L = L/Ns is the equilibrium arclength. The tension between two neighboring nodes 
then reads as

F[i],L = λL
(
LXi−1Xi − �L

) Xi+1 − Xi

‖Xi+1 − Xi‖ , (51)

for i = 0, 1, 2, · · · , Ns − 1, acting on the ith node and pointing to the (i + 1) node. Finally the total force acting on the ith 
node is given by

FXi (t) = F[i],L − F[i−1],L + Fi,B , for i = 1,2, ...,N − 1. (52)

For the two open ends of a filament, analogous versions of Eq. (49) and (52) are derived in a similar manner.
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Table 2
Computational cost comparison.

Method SIBM inertia Brownian explicit Brownian implicit

Inner timestep size 10−12 s 10−11 s 10−8 s
Time cost for 1 s 100 years (est.) 10 years (est.) 10 days

4.4. Implicit scheme and multiple timesteps

Bending rigidities introduce a severe timestep restriction that scales as �t ∝ �x4 for explicit methods [32,33]. To over-
come this, we take advantage of the fact that the stochastic immersed boundary method is computationally expensive while 
the Stokeslets method is cheap, and introduce a multiple timestep approach. First, we define an inner timestep �tinner that 
is smaller than the outer timestep �t by an integer factor (we typically use �t = 100�tinner or �t = 1000�tinner). The 
SIBM update of u1 is performed once per outer timestep. Secondly, during each �tinner we use the Stokeslets method to 
evolve the structure immersed in the fluid, assuming that during each single period �t , the thermal noise is not changed.

This allows us to use a relatively small inner timestep. However, we find that this is still insufficient to obtain numerical 
stability at our desired computational expense. Because the bending rigidity for the filaments is stiff, e.g. B = 4.2 × 10−26 J 
for a typical actin filament, explicit methods will not converge for timestep larger than 10−11 s. Therefore, in the inner 
timestep, we make use of an implicit time discretization coupled with the Broyden method [30] for solving nonlinear 
equations at each inner timestep. This method is an approximation of the Newton method to solve an implicit equation, 
except instead of solving the Jacobian Matrix in each iteration, we use the Sherman-Morrison formula to update directly 
(and approximately) the inverse of the Jacobian matrix [31].

The Broyden Method is given as follows. We first use the secant method to construct the Jacobian matrix of the elastic 
force JF numerically. The shape of the filament is updated by

Xn+1 = Xn + δX, (53)

where

δX = �t
[
L−1 (F[Xn+1])+ γ [u1]

]
, (54)

and L is the linear operator describing the Stokeslets method. We set

G(X) = X− Xn − �t
[
L−1 (F[X]) + γ [u1]

]= 0, (55)

to be the nonlinear system. In the Newton method, the update involves solving

JδX = −G(Xn) (56)

where

J = I− �tL−1JF. (57)

In the Broyden method, we instead use the current estimate of the Jacobian matrix Jn−1 and improve it by taking the 
solution to the secant equation that is a minimal modification to Jn−1 [30,31]:

Jn = Jn−1 + �Gn − Jn−1�xn
‖�xn‖2 �xTn. (58)

The computation times are shown in Table 2. We find the explicit method is stable for �tinner < 10−11 s, while the 
implicit method is stable at �tinner ≥ 10−7 s. We find the computational cost is cheaper for the implicit method, even 
though it requires us to solve a nonlinear system each inner timestep.

For implicit schemes, there is a tradeoff in terms of computational expense between small timesteps, which require 
fewer Broyden iterations but more steps, and larger timesteps, which may require more Broyden iterations but fewer steps. 
For given outer timestep �t , in order to have the highest computational efficiency, we performed a series of tests to study 
the different timestep choices. Within each �t , we use the Broyden method to evolve the semi-deterministic system by 
step size �tinner. The performance of different choice of �tinner is given in Table 3. For our parameters, we find that 
�tinner = 2 × 10−8, �t = 5 × 10−7s is the most efficient choice.

5. Numerical tests

In this section, we test our numerical scheme against a battery of scenarios in which the solution is known, exactly 
or approximately. Taken together, the tests in this section demonstrate good agreement for scenarios with particles and 
extended bodies; time dynamics and equilibrium; with and without thermal fluctuations.
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Table 3
Average Iteration Numbers (times in seconds).

�tinner 10−9 10−8 2× 10−8 5× 10−8 10−7

Iterations per �tinner 6.2 9.4 16 32 107
Iterations per �t (outer) 3127 467 392 318 535
Stability Stable Stable Stable Unstable Unstable

Fig. 1. Tracing the dynamics of a sphere (a single point) diffusing in the fluid. Here Brownian motion relation is given as �x(�t) ∼ N(0, 2D�t), where δt
denotes the time period. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. The time dependence structure, cov(yR (s), yR (s + t)). Here we set the length of each filament is L = 300 nm. The filament is clamped at one end 
and free to move on the other side.

5.1. Dynamics of a diffusing particle

We apply our scheme to simulate a small particle immersed in the fluid subject to thermal fluctuations. Here we set 
�x = 5 nm, the diameter of the particle is R = �x/2 = 2.5 nm. The system is evolved using timesteps �tinner = 2 × 10−8 s 
and �t = 5 × 10−7 s.

In Fig. 1, we report the mean displacement |�x| over time intervals δt . For longer times, we expect that this quantity 
obeys the relation

�x(δt) ∼ N(0,2Dδt). (59)

This is indeed the case for times ∼ 10−5 s (A, C). As expected, there is disagreement for short times δt ∼ 10−6, where the 
relation (59) is not supposed to hold.

5.2. Thermal equilibrium of a free filament and limitation of the implicit method

In this test, a fluctuating filament is clamped on the left hand side and free to move at the other side. Suppose the 
filament lies along the positive x-axis. We set the length of the filament L = 300 nm, partitioned into 61 spherical beads. 
Under thermal fluctuations, it will have its unclamped tip experience a displacement given by the random variable P R . We 
show the time autocorrelation of the tip displacement in Fig. 2, and its equilibrium distribution in Fig. 3A.
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Fig. 3. [A] The probability distribution of P R . [B] The E [P2
R

]
as a function of �t . For the fluctuating filaments that we are interested in, �t ≤ 10−6 s is 

required.

We compute analytically the variance of P R in thermal equilibrium, so we may compare it with our numerical results. We 
make two approximations to simplify calculations. First, we assume the lowest mode of deformation is dominant. Second, 
we approximate this mode’s shape as having constant curvature H , i.e., an arc of a circle. This defines a geometry in which

P R = 1

H
(1− cos(1− P R H)) ≈ L2H, (60)

giving this mode an energy

E = BP2
R

2L3
. (61)

This depends quadratically on P R . Therefore, by the Equipartition Theorem, thermal equilibrium provides it with mean 
energy E [E] = 1

2kB T , leading to

E

[
P2
R

]
= kB T L3

B
≈ 2.6× 10−16 m2. (62)

In Fig. 3B, we plot the mean of E 
[
P2
R

]
as a function of the outer timestep �t . We find that there is a limit to the implicit 

method: For �t < 10−6 s, we find good agreement with the theoretical value from Eq. (62) (blue curve). For �t > 10−6 s, 
we find that our method deviates from the theoretical value. Heuristically, our method omits higher modes of fluctuations, 
so we interpret this timestep limit as the timescale below which the higher modes become significant compared to the 
lower modes in determining filament configuration. We elaborate on this in the following section.

5.2.1. Estimating the timestep limitations
Although our accelerated method correctly solves for the dynamics of a spherical particle immersed in the fluid, for a 

more complicated structure, the above results demonstrate a threshold for the time step size in the implicit method. We 
seek to provide a scaling estimate of this threshold. For a filament clamped at one end, the first mode of deflection is 
described by the equation (see [14] and previous subsection)

dy ≈ −
(

B

ηL4C

)
y�t + σdB̃t, (63)

where y denotes the displacement of the free end with respect to the equilibrium position, B is the bending rigidity, LC
is the contour length, and η is the viscosity. This SDE is of the form of the Ornstein-Uhlenbeck [35] stochastic differential 
equation,

y′ = −λy + dBt/dt, (64)

where y(0) = 0, for 0 ≤ t ≤ ∞, and dBt/dt is Gaussian white noise. It has been shown that the implicit Euler method,

yi+1 = 1

1+ λ�t
yi + 1

1+ λ�t
dBi

t, (65)

leads to an underestimate of the variance of y unless λ�t  1 [35,36], that manifests itself as an over-damping effect.
For an explicit Euler method, the timestep limit is a strong threshold for stability that must be satisfied by every mode 

in our simulation. Therefore, the stability is required for the smallest element, �x ∼ 5 × 10−9. For our parameters, this 
sets a restriction for the timestep about �t < 1/λ ≈ 10−11 s. For the implicit Euler method, the timestep criterion is a 
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Fig. 4. Here the total length of the filament to be 0.3 μm, denoted by 61 connected beads, i.g. �x = 5 nm, the bending stiffness 4.2 × 10−26 J. �tinner =
2 × 10−8 s, �t = 5 × 10−7 s. [A] Simulation results compared to analytical theory from [29] in Eq. (66). [B] Nonlinear part of extension, 〈L〉 − LHook =
−L0kB T /(2

√
BFp), where LHook = L0 + F pNs/λL .

rough scaling criterion for accuracy. Since configuration of the filament is dominated by its largest modes, and we want 
accuracy for the full filament length, L = 3 × 10−7. For the first two modes, LC ≥ 1.5 × 10−7. For our parameters, this leads 
to �t ≤ 10−5 s before over-damping by our implicit scheme becomes dominant. This is in reasonable agreement with the 
onset of discrepancy we find in Fig. 3. Beyond this timestep, our method results in an underestimate of the variance of the 
filament’s tip deflection, as expected for implicit schemes.

5.3. Thermal equilibrium of an entropic spring

A further test is provided by applying a constant force F p to the end of the filament, directed along its axis [29]. 
Previously, Odjik �t = 5 × 10−7 s pointed out that there is an approximate formula for the force-extension relation valid at 
high forces,

E [L] = L0 + F pNs/λL − L0kB T /(2
√
BFp). (66)

Here L0 is the original length of the filament with no tension or fluctuation, Ns is the number of the springs that connect 
the nodes on the filament, and F p is the tension applied at the ends of the filament. Note that the above equation is valid 
only when L0kB T /

√
BFp  F pNs/λL [29]. Thermal fluctuations, i.e., entropy, create an effective spring that resists pulling 

(first term), in addition to the Hookean force (second term).
As shown in Fig. 4, our simulations results agree with Eq. (66) for large forces. Here we set the total length of the 

filament to be 0.3 μm, denoted by 61 connected beads, i.e. �x = 5 nm, that the diameter for each protein molecular is 
2.5 nm. The bending stiffness 4.2 × 10−26 J, the timestep �t = 5 × 10−7 s, and the inner timestep �tinner = 2 × 10−8 s. For 
clarity, in Fig. 4B, we plot only the nonlinear part of the displacement, corresponding to the last term in Eq. (66).

6. Application to the bundling of actin filaments

As an initial application of our scheme, we simulate the bundling of F-actin filaments. As mentioned above, actin is an 
abundant polymer that is responsible for many cellular processes. Individual actin filaments are relatively flexible, but many 
of the structures they form in cells comprise actin filaments that are bundled together. These structures include stress fibers, 
filopodia, and the cytokinetic ring [23]. Interestingly, filaments are not grown in bundles, therefore pre-existing filaments 
must find partners in order to form these structures. This interaction is mediated by bundling molecules like α-actinin and 
filamin [23,34], which are globular proteins a few nanometers in size. To explore this bundling processes, we simulate two 
filaments clamped at one end and separated by a distance d = 100 nm.

To compute a lower-bound on the time to bundling, we find the first time that the filaments are within 5 nm from 
each other, the approximate size of a bundling molecule. This corresponds to a distance between their centerlines of 10 nm. 
Note that, in the following, we refer to this lower bound as the bundling event, even though in reality a molecular reaction 
involving the bundling molecule will increase the bundling time. Our work follows an earlier study of actin bundling [14]
that omitted hydrodynamic interactions between the filaments.

Since we are only interested in the time until the filaments are within 5 nm of each other (10 nm distance between 
centerlines), we stop the simulation the moment this condition is met. This obviates the need for us to deal with explicit 
steric (excluded volume) interaction forces, or inaccuracies due to two filament nodes being within the same Eulerian grid 
point.

6.1. Two fluctuating filaments: time series and bundling statistics

We set the total length of each filament to be 0.3 μm and use 61 connected beads, giving �x = 5 nm. The base distance 
between the two bundling filaments is 100 nm. We set the timesteps to be �tinner = 2 × 10−8 s and �t = 5 × 10−7 s. We 
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Fig. 5. The length of each filament is L = 300 nm. The distance between the two bundling filament is 100 nm. [A] Histogram of the bundling time. In these 
simulations, the two filaments share the same fluid. [B] Histogram of the bundling position. The average bundling position is at the right tip of the filament 
for both cases. [C] Bundling position vs bundling time.

Fig. 6. The dynamics of bundling filaments up to one second. [A] The distance of the 2 filaments over 1 second. [B, C] Shape of the 2 filaments at the time 
of bundling proximity. Note that in both cases, the filament centerlines are separated by 10 nm, even though the perspective suggests they are in contact.

initialize the filaments in their unbent equilibrium positions and allow the simulation to run until a bundling event, which, 
as noted above, we define as any portion of the filaments reaching within 10 nm of each other. The distribution of bundling 
times is shown in Fig. 5A, where we plot the histogram of the bundling time for 30 simulations. The mean bundling time 
is 0.86 × 10−3 s. In Fig. 5 [B], we show the distribution of bundling positions, which is strongly biased towards tips of the 
filaments, as expected.

We also performed simulations up to 1 second, in which we do not stop the simulation upon bundling. In Fig. 6 we 
show the distance between the two filaments over 1 second (A), and two of the snapshots when the two filaments are 
in bundling proximity (B, C). In this time series, the two filaments bundle 6 times (where we consider multiple bundling 
events separated by less than 0.001 s as a single event).

Many previous simulations of stochastic motion of biostructures [14,34,37] omit direct simulation of the fluid, and there-
fore neglect hydrodynamic interactions between the immersed bodies. To understand the influence of hydrodynamics, we 
perform a hydrodynamic-free simulation as follows. We run two simulations with single filaments, recording the positions 
of these filaments at each time. We then perform a “virtual” bundling simulation in which these two simulations are re-
played simultaneously, and look for the first bundling event, defined as above. We find the mean bundling time in this 
“no-fluid” case is Tnf = 1.1 × 10−3 s. This is longer than for bundling simulations that include hydrodynamics, by a factor of 
1.3 at this separation distance.
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Fig. 7. [A] Mean bundling time versus the base distance d. [B] Accelerated bundling ratio Tnf/T f of no-fluid (no hydrodynamic interactions between two 
fluids) and fluid (which includes hydrodynamics) as a function of distance d.

Fig. 8. [A] Correlation between the free ends of the 2 filaments. [B] Standard deviation σy,L versus base.

We then varied the base distance d, and tested the average bundling time in our full hydrodynamic fluid simulation, T f , 
as well as the no-fluid simulation, Tnf, to study the influence of the fluid. As shown in Fig. 7A, the average bundling time 
increases as d increases. In Fig. 7B, we plot the accelerated bundling ratio Tnf/T f , which is the mean bundling time for 2 
independent filaments relative to the mean bundling time for 2 coupled filaments in a fluid.

6.2. Ergodic explanation for accelerated bundling

We seek a heuristic explanation for this acceleration in bundling and why it increases, in relative terms, with increasing 
separation distance. There are two major hydrodynamic effects that influence the average bundling time. The first is that 
low-order (large wavelength) modes of thermal fluctuation cause the two filaments to move together along the same di-
rection. This will increase the mean bundling time T f . The second effect makes both filaments bend more, i.e., further from 
their equilibrium configurations. We can restate this in terms of the co-variance between the two filaments’ y deviations,

ρ
y
1,2 = cov(�y1,R ,�y2,R)

σ�y1,Rσ�y2,R
, (67)

where �yi,R (i = 1, 2) is the displacement of one free end with respect to its initial equilibrium position, and σ�yi,R is the 
corresponding standard deviation. As Tnf/T f increases with d, ρ y

1,2 decrease with d. In Fig. 8B, we plot σy,L , the standard 
deviation of the free ends along the y direction, versus d, the base distance. We find that this increases with d. Thus, the 
first effect acts to increase the correlation coefficient ρ y

1,2, while the second effect acts to reduce ρ y
1,2.

In the absence of hydrodynamic interactions, the covariance between filaments is zero. From our hydrodynamic-free 
simulations, we also know the variance is �y = 3.25 × 10−8 m for the free end of one single filament in a fluid. We 
therefore wondered if the change in bundling times could be due to the introduction of nonzero covariance and small 
change in variance. Approximately, �y1,R(t) and �y2,R(t) both appear to obey normal distributions. The joint distribution 
function for �y1,R and �y2,R is therefore approximately

f (�y1,R ,�y2,R) = 1

2πσ 2
√
1− ρ2

exp

(
− 1

2(1− ρ2)σ 2

[
�y1,R

2 + �y2,R
2 − 2ρ�y1,R�y2,R

])
,

and the same for �z1,R and �z2,R .
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Fig. 9. [A] Probability of bundling due to sampling points. [B] Acceleration rate.

We generate 1010 independent sample points from this distribution, i.e., 1010 values for each of �y1,R , �y2,R . Note 
that this generates a sample of filament configurations, but no temporal dynamics. Therefore, we cannot compute bundling 
times, but we can compute bundling probabilities, defined as the probability that the two filament tips are within 10 nm 
of each other. These probabilities are shown in Fig. 9A. In Fig. 9B, we plot the accelerating rate which is the ratio between 
the probability of the two cases. This produces a trend of acceleration that agrees with the direct simulation results shown 
in Fig. 7 (but is shifted downwards).

7. Discussion

The study of hydrodynamic interactions between cytoskeletal filaments, and other cell-biological phenomena, requires a 
computational method that combines fluid-structure interactions with thermal fluctuations, accessing dynamics on the mi-
cron length-scale and seconds time-scale. We present such a computational scheme here. The development of this method 
required us to exploit several different techniques. First, we derive a large-timestep stochastic formulation in which the 
fluctuation sizes are damped, following previous work [16,17], allowing timesteps larger than the inertial timescale. Second, 
we exploit the linearity of Stokes flow and separate the fluid’s velocity field into two parts, one of which is solved using 
the immersed boundary method, which readily handles thermal fluctuations, and the other is solved using a regularized 
Stokeslet method, allowing us to model a filament of finite thickness without an exceedingly small spatial discretization. 
Third and finally, we use multiple timesteps, with an implicit Euler scheme on the inner timestep where we impose deter-
ministic forces. This is done to overcome the severe timestep stability criterion that arises due to bending resistance of the 
filament.

This method has several limitations. Accuracy is lost for larger outer timesteps (Fig. 3). In Section 5.2.1 we argue that, 
as the timestep grows, we lose accuracy in higher modes of deformation first, therefore we are able to match coarse 
filament behavior while still being computationally efficient. Nonetheless, we are able to reproduce theoretical estimates for 
thermal-fluctuation-driven behavior. We note that this is not possible in two-dimensional approximations of stochastic fluid 
dynamics, where there are issues with scaling the thermal energies [22]. (This is similar to the importance of dimensionality 
in single-particle Brownian motion, in which 2D and 3D behavior are qualitatively different.)

Alternative methods for simulating polymers have been developed using Stokeslets, e.g., reviewed in [38]. These studies 
are applied to filaments that are flexible in the thermodynamic sense, meaning their length is many times their persistence 
length. As F-actin filaments we study are shorter than their persistence length, the interplay between enthalpic bending 
and entropic exploration of angles is different from more flexible polymers like DNA. There have also been studies of short 
filaments using bead-spring models with hydrodynamic interaction terms, e.g., [39]. Our method is distinct in that the full 
flow field is computed at every timestep, something that may be informative for certain scientific questions, e.g., the role of 
flow on soluble particles.

Our results add to a growing body of research (e.g., [4]) suggesting that hydrodynamic interactions may be significant 
for biopolymer interactions in cells. Specifically, we studied the role of hydrodynamics in F-actin bundling. The detailed, 
mechanistic study of actin bundling is of continuing value [40–42]. Recent studies highlighted the role several different 
bundling proteins in different scenarios, such as fascins, which are implicated in bundling F-actin to form the “invadopodia” 
that power cancer cell metastasis [43,44], and L-plastin that bundles F-actin to enable the immune activity of lymphocytes 
[45,46].

This work will enable us to study how hydrodynamics influences other F-actin dynamic processes. For example, one 
of the primary F-actin nucleation mechanisms employs Arp2/3 to create new filaments branching off existing ones at a 
precisely controlled 70◦ angle [23]. Recent evidence suggests that, in some circumstances, these branched F-actin networks 
can transform into bundled F-actin arrays [47], raising the question of how two semi-flexible filaments, joined at a rigid 
clamp of 70◦ , can fluctuate into sufficient proximity for bundling. Another question relates to the action of F-actin interacting 
with a membrane. Here, F-actin can grow by addition of new monomers, but only upon thermally fluctuating away from 
the membrane in a phenomenon termed the Brownian ratchet [13]. In vivo, many such F-actin filaments appose a single 
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membrane to generate large-scale (nanonewton) forces on the membrane. The additivity of this ensemble of filaments is 
observed to be non-linear [48,49], raising the question of whether hydrodynamic interactions could be playing a major role 
here. The present work opens up this important regime of spatial, temporal and energy scales for future simulation.
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